Formal Semantics and Implementation
of BPMN 2.0 Inclusive Gateways

David Raymond Christiansen, Marco Carbone, and Thomas Hildebrandt

IT University of Copenhagen,
Rued Langgaards Vej 7,
2300 Copenhagen, Denmark

Abstract. We present the first direct formalization of the semantics of
inclusive gateways as described in the Business Process Modeling Nota-
tion (BPMN) 2.0 Beta 1 specification. The formal semantics is given for
a minimal subset of BPMN 2.0 containing just the inclusive and exclu-
sive gateways and the start and stop events. By focusing on this subset
we achieve a simple graph model that highlights the particular non-local
features of the inclusive gateway semantics. We sketch two ways of imple-
menting the semantics using algorithms based on incrementally updated
data structures and also discuss distributed communication-based imple-
mentations of the two algorithms

1 Introduction

Business Process Modeling Notation (BPMN), a standardized notation for rep-
resenting processes within organizations, is soon to be released in a major new
revision. According to the draft BPMN 2.0 specification,

The primary goal of BPMN is to provide a notation that is readily un-
derstandable by all business users, from the business analysts that create
the initial drafts of the processes, to the technical developers responsible
for implementing the technology that will perform those processes, and
finally, to the business people who will manage and monitor those pro-
cesses. Thus, BPMN creates a standardized bridge for the gap between
the business process design and process implementation [5], p. 1].

Because BPMN seeks to serve as a kind of universal communication tool for
business processes, it is vitally important that all parties agree on the meaning
of a BPMN diagram. The BPMN 2.0 specification provides a rather detailed,
but still only informal description of its semantics [5, p. 389].

The so-called inclusive gateways of BPMN seem particularly challenging to
provide semantics for, since a non-trivial (and non-local) backwards search in
the flow graph is included in the specification of their semantics. This is similar
to the OR-joins of YAWL and EPC which have been the subject of several
papers aiming to clarify their non-local semantics [6/I13]. In this work, we focus
on a small subset of BPMN 2.0, called BPMNj,. (BPMN inclusive) which just



2 David Raymond Christiansen, Marco Carbone, and Thomas Hildebrandt

includes the primitives needed to illustrate the complexity of inclusive gateways
and formalize their semantics in a way that can be generalized to full BPMN 2.0.
BPMN;,,. is defined in Section@ A formal semantics is provided for BPMNj,,. in
Sectiond] followed by a discussion of how it can be implemented efficiently and
in a distributed manner. Related work is discussed in Section [

2 BPMN;j,. and its Informal Semantics

BPMN process diagrams contain a large number of different graphical elements.
Broadly speaking, there are four classes of elements that are of interest when
designing semantics:

Sequence Flow describes the order in which various parts of the process occur.
Events represent things that can happen during a process, such as a message
being sent or a timer.

Activities represent work performed by a company, and can either be atomic (in
which case they are called tasks) or they can represent another process diagram.
Gateways provide flow control within a process diagram [5, p. 21].

With the exception of Sequence Flow, there are multiple variations of each of
the above elements, providing for different kinds of flow control and allowing
representation of different kinds of business activities.

For purposes of this paper, only a small subset of BPMN that is sufficient to
illustrate certain difficult properties will be used. BPMNj,,, the subset, contains:

- Sequence flow - Exclusive gateways - Inclusive gateways
- Start events - End events

Above, a gateway is exclusive when it behaves as an exclusive conditional while
it is inclusive when its activation depends on further conditions on the incoming
flows as well as allowing for multiple parallel outcomes. Start and end events
model initiation and termination of BPMN processes. In the following, certain
aspects of BPMNj,,. will not be defined in full detail. For example, the conditions
that determine which outgoing sequence flow should be chosen after a gateway is
activated are simply assumed to exist and be subject to evaluation, giving either
a true or false result, while the mechanism of this evaluation remains unspecified.

Activities are not included in BPMNj,., as their possible effects are not
modeled. For our purposes, an activity will be equivalent to an exclusive gateway
with a single incoming and a single (default) outgoing sequence flow.

Finally, note that the parallel split from BPMN where the flow of execution
is split into two parallel flows can just be seen as a special case of inclusive
gateways, where all outgoing conditions evaluate to true and the default flow
connects to the end event. Parallel join is not straightforwardly encodable using
inclusive gateways, but it is however straightforward to include in our semantics.

2.1 Sequence Flow and Tokens

Sequence flow represents the order in which the execution of a BPMN process
occurs. [B, p. 21] It is represented as an arrow in Fig. [1} We follow the BPMN



Formal Semantics and Implementation of BPMN 2.0 Inclusive Gateways 3

_e,

Fig. 1. A Sequence Flow with Token

2.0 specification in representing the execution state of a process with tokens on
sequence flow[5], which is represented graphically as a small solid black circle
placed next to the sequence flow. When the sequence flow before some element
of a process diagram receives a token, then the element is activated in some
way dependent on the precise type of element. The control-flow semantics of the
gates are then given by the tokens required on their incoming sequence flow and
the tokens produced on the outgoing sequence flow. Note that a sequence flow
may have more than one token.

2.2 Exclusive Gateways

The semantics of exclusive gateways are quite uncomplicated. When a token
arrives on any incoming sequence flow, it evaluates the conditions on the outgoing
sequence flow until it finds one that returns true. It then places a token on that
sequence flow and stops evaluating conditions. If no condition evaluates to true,
then the sequence flow marked as default receives the token. [B], p. 401]

In BPMNj,,c, every exclusive gateway must have a default outgoing sequence
flow, which is indicated by placing a slash through the line immediately next to
the gateway. In the exclusive gateway in Fig. 2] when a token arrives on any one

Cl
C2

Fig. 2. An exclusive gateway

of the incoming sequence flow on the left, C; is evaluated. If it is true, a token
is emitted on the sequence flow that C is associated with. If it is not true, then
Cy is evaluated, and if it is true, then a token is emitted on the sequence flow
attached to Cs. Finally, if no condition evaluates to true, then a token is emitted
on the default sequence flow.

2.3 Inclusive Gateways

The BPMN inclusive gateway is problematic because it requires a search to be
made for tokens upstream of itﬂ To quote the specification:

! Note that other gateways, such as the complex gateway, share this behavior



4 David Raymond Christiansen, Marco Carbone, and Thomas Hildebrandt

The Inclusive Gateway is activated if
— At least one incoming sequence flow has at least one Token and
— for each empty incoming sequence flow, there is no Token in the
graph anywhere upstream of this sequence flow, i.e., there is no di-
rected path (formed by Sequence Flow) from a Token to this sequence
flow unless
e the path visits the inclusive gateway or
e the path visits a node that has a directed path to a non-empty
incoming sequence flow of the inclusive gateway. [B, p. 401]

BPMNj, includes all this behavior. Note that the specification is indepen-
dent of which other events, activities or gateways are allowed in the diagram.
Consequently, our formal semantics for inclusive gateways can be straightfor-
wardly extended to any superset.

According to the above definition, in the process shown in Fig. [3] if there is
a token on edges A and B, then the rightmost inclusive gateway is allowed to
activate because there is a directed path from the topmost exclusive gateway to
A. However, if the topmost exclusive gateway fires first and sends a token on
its top sequence flow, then the gateway labeled o must complete, depositing a
token at C, before the rightmost inclusive gateway can fire. The example thus
also illustrates that the BPMN 2.0 specification of the behavior of inclusive
gateways may lead to race conditions.

Fig. 3. Process with inclusive gateways

The other exception in the search defined above relates to gateways in cycles.
Fig [ shows one such process. The inclusive gateway can fire if there is a token
on the middle sequence flow (from the start event) even though the top and
bottom incoming sequence flow do not have tokens.

A simple approach to a token-based semantics, in which gates determine
whether to fire based only upon which of the incoming sequence flow contain
tokens, is clearly unable to implement the requirements of the specification with-
out resorting to some kind of global information about the flow of control in the
rest of the process.

After the inclusive gateway fires, the conditions on all outgoing sequence flow
are evaluated. If any of them are true, then all sequence flow whose conditions
are true receive tokens. If none of them are true, then the default outgoing
sequence flow receives a token.



Formal Semantics and Implementation of BPMN 2.0 Inclusive Gateways 5

Fig. 4. A process involving loops and inclusive gateways.

2.4 Start and End Events

A start event is responsible for emitting the first token that starts the process.
BPMN has relatively complex semantics for running multiple parallel instances
of subprocesses. Because BPMNj,,. has no concept of subprocesses, start events
need only emit the first token.

Likewise, no specific semantics for the end of a subprocess are necessary
in BPMNj,.. Therefore, end events simply consume tokens, and the process is
complete when there are no tokens remaining.

3 Formal Semantics for BPMN;j,,.

In this section, we define a formal semantics for BPMNj,.. Unlike the other
possible approaches to providing a formal semantics for BPMN (see Section ,
the semantics provided here does not attempt to translate the BPMN;,,. process
to another formal system. Instead, semantics is given operationally directly as a
token-based semantics for the BPMNj,. process graph.

Throughout this section, the process in Fig. [5| will be used to demonstrate
the formalization. The letters «, (3, v and ¢ are not a part of BPMNj,,., but they
provide a means of referring to individual gateways.

=]

[ J
)
"/

y

’0

Fig. 5. A simple process with a loop.




6 David Raymond Christiansen, Marco Carbone, and Thomas Hildebrandt

3.1 BPMNj,. Process Graphs
Below, we give the formal definition of BPMNj,. process graphs:

Definition 1 (BPMN;j,. Process) E| A process P is a tuple (N, L, S, =<,C, M)
such that:

— N is a set of nodes;

— the labeling L : N — {Excl, Incl, Start, End} maps nodes in N to either Excl
(BPMN ezclusive gateways), Incl (BPMN inclusive gateways), Start (start
events), and End (end events);

— S C N X N is a set of sequence flows such that (n,n’') € S implies L(n) #
End and L(n') # Start;

— =XC S xS is an ordering relation over S such that

e for all n if (n,n') € S and (n,n") € S then either (n,n’) < (n,n") or
(n,n") < (n,n’) (=X is total over the outgoing sequence flows for any
given gateway);

e and (n1,n2) = (n3,nyg) implies ny = n3 (= does not relate sequence flows
with different source gateways);

— C: 8 — Cond is a partial map (defined on the outgoing sequence flows of
inclusive and exclusive gateways) to (an assumed set of ) conditions such that
the mazimal (w.r.t. the ordering <) outgoing flow for each gateway always
has the condition true; and

— M : S — N s a marking of S with tokens.

Above, =< is an ordering relation defined such that the outgoing sequence flow
of any node is totally ordered. The maximal outgoing flow of exclusive and
inclusive gateways w.r.t. this ordering plays the special role as the default flow.
Graphically, this is represented by the layout order of the outgoing sequence
flow, with a dash through the line of the default flow (if there are more than
one outgoing flow). In the rest of the paper we will let D = {s | L(fst(s)) €
{Excl,Incl} ANVs' : s < s implies s = s} be the set of all default flows. We
can then use this ordering when implementing the exclusive gateway in order to
determine the order in which the conditions on the outgoing sequence flow should
be evaluated. C' represents a mapping from sequence flow to logical conditions
that are evaluated in order to determine which outgoing sequence flow of some
gateway receives tokens when that gateway fires. For our purposes, it suffices
simply to define some condition C(s) for some sequence flow s € S to be true
just in case some evaluation function eval(C(s)) returns true. Note that it is not
strictly necessary to introduce C and ewval, as the rules could simply be rewritten
to be nondeterministic, yielding a simpler semantics with equivalent behavior.
However, the current formulation is closer to the semantics of full BPMN, and it
makes clear exactly how this particular nondeterminism is to be removed when
expanding the subset.

% This definition is somewhat analogous to that of Petri nets[7], where N corresponds
to transitions, and S corresponds to places, except that the sequence flow connects
exactly one node to another node.



Formal Semantics and Implementation of BPMN 2.0 Inclusive Gateways 7

Example 1 The process P1 in Fig. @ is represented as the tuple (N, L, S, =<
,C, M), where

N ={a,B,7,6,}

L = {(a, Start), (8, Incl), (v, Excl), (§, End) }

S ={(a,8),(8,7),(8,9), (v, 8)}
C=A{((8,7):Cp) }

M = {((a,8),1),((8,7),0),((8,6),0), (v, 8), 0)}

and (B,7) =2 (8,9) is the only non-trivial pair in <

where Cg ., denotes some condition with associated evaluation function eval that
returns either true or false. The set D of default flows given as the mazximal
outgoing flows w.r.t. the order < is {(5,9), (v,0)}-

Before giving the formal semantics of processes, we formalize the notions of
incoming and outgoing sequence flows.

Definition 2 (Incoming/Outgoing Sequence Flow) The incoming sequence
flow of some node n, written S;n(n), is defined as Sin(n) = {(no,n1) € S| n1 =
n}. The outgoing sequence flow Sy is defined as Sout(n) = {(no,n1) € S | no =
Additionally:

Definition 3 (Source/Target Nodes on Sequence Flow) The source and
target nodes of some sequence flow s = (ng,n1) are defined as fst(s) = ng and
snd(s) =mnq.

Example 2 For P from Ezample |1 S;n(8) = {(a,B),(7,8)} and Sout(8) =
{(8,7), (8,0)}-

3.2 BPMN;j,. Formal Semantics

The approach to semantics discussed in this section successfully implements
the rules governing inclusive gateways informally discussed above. Evaluation is
divided into two phases. The first phase of the evaluation consists of annotating
each sequence flow with the set of paths from that sequence flow to each upstream
token. In the second phase we use that information to determine if inclusive
gateways can fire. Once a gateway fires, a token (and at most one) is obviously
consumed.

The annotation map G has type S — 2N, or in other words, it maps sequence
flow to sets of sequences of nodes. To avoid confusion, sequences of nodes are
written in square brackets, where [] represents the empty sequence. G is com-
puted with algorithm One way to picture the operation of the algorithm
(which we will elaborate a bit more in Section below) is by imagining that
each token sends a message down its sequence flow. That message, which starts



8 David Raymond Christiansen, Marco Carbone, and Thomas Hildebrandt

with an empty payload, accumulates the unique identifiers of each of the gate-
ways that it crosses. The message travels out of all of the outgoing sequence flow
of each gateway it enters. If the gateway that the message is about to cross is
already listed in the message payload, then it stops.

Algorithm 3.1: COMPUTEPATHANNOTATIONS(S, N, M)

procedure ADDTOPATH([ag, a1,...,ans],b)
/*Add b to the end of the path only if b is not in the path already*/
if b € {ag,a1,...,a,}

then p « [ag,a1,...,a,]
else p — [ap,a1,...,an,b]
return (p)

procedure STEPPATHANNOTATION(G)
G' — 0 /*G’ represents the new annotation to be generated from G. */

for each s = (ng,n1) € S

if M(s) >0
G'(s) —={l}
then ¢ /* Sequence flow containing a token always has
an empty path to a token */
ps 0
for each s’ € S;,(ng)
do ps; < ps U{ADDTOPATH(p,ng) | p € G(s')}
else G/(S) — ps
/* Each sequence flow gets incoming sequence
flows’ 4+ the node on the left */

do

return (G')

main
Go + STEPPATHANNOTATION(())
repeat

/* Tterate until the fixed point is found */
do G1 — Go
Gy «— STEPPATHANNOTATION(G))
until GO = G1
return (G;)

The algorithm consists of two working procedures ADDTOPATH and STEP-
PATHANNOTATION along with the main code contained in main. Procedure
ADDTOPATH simply takes a path of nodes [ag,a1,...,a,] and appends a new
node b at its end only if b is not already present. The other procedure, namely
STEPPATHANNOTATION takes a flow annotation G as an argument and returns



Formal Semantics and Implementation of BPMN 2.0 Inclusive Gateways 9

a new one by updating G according to the marking M. More precisely, each
sequence flow s containing a token (that is, where M (s) > 0) is annotated with
the empty string. On the other hand, each edge with no tokens is updated ac-
cording to the annotations of upstream sequence flows: if (ng,n) and (n,n;) are
in S then G((n,n1)) is also updated with ADDTOPATH(G((ng,n)),n). Finally,
the code in main computes the least fixed point of STEPPATHANNOTATION.

Example 3 Applying Algorithm to P from Ezample[]] yields the map

(
(
(

2 W R
S X2 @

(8,

This annotation is illustrated visually in Fig. [0

Fig. 6. Example path annotation

We can now state the following:

Theorem 1. Algorithm[3.1] always terminates.

Proof (Sketch). The fix point always exists simply because the topology of the
process is finite, paths can at most contain each node once, and the function
AddToPath is monotone. a

Given a BPMNj,,. process (N, L, S, <, C, M) with path annotation G, a new
marking M’ can be obtained by applying any of the following rules to any node
n = (a,t).

First, to help keep the definition of the rule covering inclusive gateways read-
able, the function NotBlocking, which determines whether a particular empty
incoming sequence flow prevents an inclusive gateway from activating, is defined
as follows:



10 David Raymond Christiansen, Marco Carbone, and Thomas Hildebrandt

Definition 4 The predicate NotBlocking(s) is true if and only if

G(s)=10 Y
snd(s) €p Y

P € Gls) s’ € Sin(snd(s)) : (

M(s)>0 A >

dn € p: Reachable(n, s')

where
Reachable(n,s) = (n =fst(s) Vv 3s' € Sin(fst(s)): Reachable(ms’))

NotBlocking corresponds to the conditions defined in the specification under
which an inclusive gateway is allowed to fire even though it has empty incoming
sequence flow. When listing the requirements for empty incoming sequence flow
to inclusive gateways, the specification states that the gateway may only fire
if there is no token upstream of the empty sequence flow, unless the path to
the token visits the inclusive gateway or any node on the path is upstream of
one of the incoming sequence flows with a token [5 p. 401]. In the definition of
NotBlocking:

— The clause G(s) = @ corresponds to there being no token upstream of the
sequence flow, as it means there are no paths from a token to s.

— The first disjunct within the universally quantified clause represents the
situation in which the path in question visits the inclusive gateway.

— The second disjunct represents the path in question being upstream of an
incoming sequence flow that has a token. This is because if a node that is
upstream of the empty incoming sequence flow includes another node that is
part of a path to a sequence flow with a token, then that node is upstream
of that sequence flow.

We now give the formal semantics of BPMNj,. through three rules. In the
following, we define 4 = 1 whenever the predicate ¢ is true and 4 = 0 otherwise.
First, we give the rules for the activation of inclusive gateways:

Vs € Sin(n) : (M(s) > 0V NotBlocking(s)) sy € Sin(n) : M(s) >0
Sk € Sout(n) : (Sor & D A eval(C(sok))) L(n) = Incl
(INcr)

Vs € Sin(n) : M'(s) = M(s) — 0rr(s)>0
Vs' € Sout(n) : M'(s") = M(s') + 0(srgDreval(c(s)))

Vs € Sin(n) : (M(s) > 0V NotBlocking(s)) s € Sin(n) : M(s¢) >0
= (Fsor € Sout(n) : (sor & D A eval(C(sok)))) L(n) = Incl

I
(INCLpy) Vs € Sin(n) : M'(s) = M(s) — 6ar(s)>0

Vd € Sput(n) : M'(d) = M(d) + dgep



Formal Semantics and Implementation of BPMN 2.0 Inclusive Gateways 11

These rules construct a new marking M’, which gives the marking of the
ingoing and outgoing flows after the gateway has fired. (INCLpy) activates the
default outgoing sequence flow if no outgoing sequence flow with conditions
receive tokens.

The clause £(n) = Incl in the premise of (INCL) simply restricts the rule
to only apply to inclusive gateways. The condition 3s; € S;n(n) : M(s¢) > 0
corresponds to the requirement in the specification that “At least one incoming
sequence flow has at least one Token” [3, p. 401]. The condition Vs € S;,(n) :
(M(s) > 0V NotBlocking(s)) guarantees that each empty incoming sequence
flow meets the requirements, as discussed above. Finally, the condition (3s,x €
Sout(M) = (Sor & D A eval(C(sok)))) guarantees that the outgoing sequence flow
should not be activated. In that case, (INCLpr) should be activated instead.
The two components of the conclusion of (INCL) are responsible for removing
tokens from the incoming sequence flow and distributing them over the outgoing
sequence flow according to the conditions, respectively.

The structure of (INCLpg) is similar to that of (INCL). It simply states that if
an inclusive gateway fires and none of its non-default outgoing sequence flow will
receive a token, then the default sequence flow receives the token. Otherwise, it
works as (INCL).

Exclusive gateways are much simpler:
s € Sin(n) M(s) >0
s € Sout(n) eval (C ("))
Vs" € Sout(n) : eval(C(s")) = s’ =< ¢” L(n) = Excl

E
(Excr) Vi € Sen(1) : M'(s) = M(5) — 65—

VSOut S Sout(n) . MI(S/) = M(S ) + 550711:5/

Example 4 Given G from Ezample[3, we can compute our new marking using
the evaluation rules. Incl can be applied at (3, as both (a, B) and (v, ) satisfy
InclSearch. Assuming that eval(Cg—.), we can then generate a new marking

M = {((a, ),0), ((8,7),1),((8,9),0), (7. 8),0)}

M’ represents the new state of the process on which the token has been passed
onward from the inclusive gateway.

3.3 Incremental and Distributed Implementations

The semantics given above formalizes the specification rather directly. If imple-
mented naively, the computation of StepPathAnnotation and NonBlocking are a
quite costly way to determine if an inclusive gateway can fire. Below we discuss
two possible ways of implementing the semantics more efficiently by updating
the data structures incrementally.



12 David Raymond Christiansen, Marco Carbone, and Thomas Hildebrandt

Incrementally computed path annotations. Alternatively to computing
the path annotations from scratch for every step we can compute them incre-
mentally. We then initially (and only once) compute the path annotations using
the COMPUTEPATHANNOTATION algorithm. Every time a gateway n is fired we
update the path annotations for each flow s reachable from the outgoing flows of
n as follows: If the marking of an outgoing s flow changes from 0 to 1 we remove
n from the head of all the paths in annotations of the flows reachable from s (i.e.
they receive a token and there was no token before). If all the incoming flows of
the gateway n get marking 0 we also remove all paths from annotations of flows
reachable from the outgoing flows that have n at their head. Figure [7] shows an
example of this update on the example given in Figure [3[ (default flows are left
unspecified in the figure). After v fires, it is removed from the heads of the paths
of the downstream sequence flow annotations.

Fig. 7. Incremental path annotation update

Precomputed path annotations and incrementally computed normal-
ized markings. Given a marking, define the normalized marking My, by

Mo,1(s) = 5M(s)>o

For any BPMNj,. process there are finitely many (2|S |) normalized markings.

Now, the function G computed by COMPUTEPATHANNOTATIONS and the
function NonBlocking for each flow only depend on the normalized marking of the
flows that are reachable by following sequence flow backwards from the sequence
flow in question. Consequently, as an alternative to incrementally maintaining
the path annotations, the functions can be pre-computed for all of the possible
normalized markings.

In addition to maintaining the markings of sequence flows, an implementa-
tion needs then only, for each sequence flow (n,n’) € S, to incrementally keep
updated a table of normalized markings of the flows backwards reachable from
the gateway n’. This can be done each time a gateway fires by updating the
normalized marking (if it changes) for the flows reachable on paths starting on
the outgoing flows of the gateway.



Formal Semantics and Implementation of BPMN 2.0 Inclusive Gateways 13

Distributed communication-based implementations. The two implemen-
tations above can be made in a distributed way by representing each gateway
as a process and sequence flows as communication channels between processes.
Each gateway process then maintains for each incoming flow the data structures
(of respectively the path annotations or the table of normalized markings). It can
then receive messages from gateways connected to incoming flows with updates,
which can be forwarded (if necessary) to the gateways on outgoing flows.

4 Related Work

Previous work regarding the semantics of BPMN inclusive gateways can, broadly
speaking, be divided into three main categories: semantics of BPMN that do not
provide a non-local upstream search behavior for inclusive gateways, BPMN
semantics that do, and semantics of other process languages that include similar
constructs.

All previous work has been based on earlier versions of the BPMN standard,
which were significantly less specific with regards to the semantics of the inclusive
gateway. As far as the authors are aware, this is the first formal treatment of
inclusive gateways making use of BPMN 2.0’s semantics.

The definition of inclusive gateways in BPMN 1.0 is as follows:

Process flow SHALL continue when the signals (Tokens) arrive from all
of the incoming Sequence Flow that are expecting a signal based on the
upstream structure of the Process (e.g., an upstream Inclusive Decision,).

The particular deficiency of the specification of inclusive gateways in BPMN
1.0[4] is highlighted in a paper by Dijkman, et al, that provides a mapping from
a large subset of BPMN to Petri nets, enabling the use of standard tools for
analysis of processes.

Dijkman et al point out that the definition of inclusive gateways fails to
specify which sequence flow should expect a signal, and especially does not take
into account situations in which the inclusive gateway is upstream from itself.
These concerns are largely solved in the draft version of BPMN 2.0, which is
quite specific on these matters.

Wong and Gibbons[I(] present a translation of a subset of BPMN process
diagrams to CSP. They characterize the inclusive gateway as simply accepting
tokens on some subset of the incoming sequence flows and then generating tokens
on some subset of the outgoing sequence flows.

Prandi et al [8] define a mapping from BPMN to the process calculus COWS.
Similarly to other mappings based on BPMN 1, an inclusive join is simply trans-
lated into a process that can receive a signal on any subset of its inputs and then
sends a signal onwards.[8], p.256]

Ye, et al’s translation to YAWL [I1] is perhaps the most faithful to BPMN
in its implementation of inclusive gateways. The inclusive gateway is mapped
to a YAWL OR-join. In YAWL, the OR-join has non-local semantics similar to



14 David Raymond Christiansen, Marco Carbone, and Thomas Hildebrandt

those defined for BPMN’s inclusive gateway [9]. Indeed, Dijkman suggested that
the designers of BPMN borrow these semantics directly in an aside in [2].

The inclusive gateway semantics proposed in [I] is compatible with the vague
phrasing of BPMN 1.0. However, the model adopted to deal with cyclical process
graphs is not compatible with the better-specified semantics in [5], as it divides
the tokens in the cycle into groups based on the iteration in which they are
produced, and then considers each iteration separately. BPMN 2.0 [5] did not
adopt this model, and it allows tokens from many different iterations to interact.

Dumas et al. [3] provide a semantics for BMPN’s inclusive gateways based
on the imprecise BPMN 1.0 specification, and their solution ends up very similar
to ours. However, they provide a means for resolving the resulting deadlock in
the vicious circle example, which is a situation in which two inclusive gateways
depend on each other cyclically. Since the informal specification that was even-
tually adopted in BPMN 2.0 does not include this resolution strategy, and as
our work is a faithful translation, we do not include it.

BPMN'’s inclusive gateway is quite similar to constructs called “OR-joins” in
various other process formalisms, in particular YAWL[9] and EPCs. Indeed, Di-
jkman suggested that the designers of BPMN borrow YAWL’s semantics directly
in an aside in [2].

In [6], Kindler points out that the informal semantics of OR~joins in Event
driven Process Chains (EPCs), which contain a similar non-local backwards con-
dition, can not be formalized consistently, due to the same sort of vicious circle
treated in [3]. The BPMN 2.0. specification eliminates this problem, although
the vicious circle example will result in a deadlock. However, as illustrated by
the example in Fig. |3l BPMN 2.0 may exhibit race-conditions.

The primary difference between BPMN inclusive gateways and OR-joins in
other notations is that a token that is upstream of both an empty and a full
incoming sequence flow does not block the activation of the gateway in BPMN,
while other languages do not include this stipulation. Therefore, straightforward
translations of inclusive gateways to OR-joins such as Ye, et al’s translation to
YAWL[IT] are insufficient to capture BPMN 2.0’s semantics.

5 Conclusion and Future Work

The particular behavior defined for inclusive gateways in BPMN 2.0 makes it
difficult to provide a local semantics. However, given access to global information
about the current state of execution, a precise semantics for inclusive gateways
can be provided.

In this paper, one such precise semantics is provided. It differs from other
approaches in that it does not attempt to translate BPMN process diagrams into
other, better-understood calculi or process modeling languages. Instead, the se-
mantics is provided directly in terms of a subset of BPMN. While this approach
precludes the use of tools and methods developed for these other models, it can
allow use of the semantics more easily either in implementations of BPMN or in



Formal Semantics and Implementation of BPMN 2.0 Inclusive Gateways 15

providing analyses that are more easily understood by less-technical users who
may not be familiar with other process models. Due to the non-local nature of in-
clusive gateways, this semantics requires the use of a backwards search algorithm
for determining the parts of the global execution state that are relevant to each
inclusive gateway at each step of the execution. We have sketched in Section |3.3
two approaches to how this search can be replaced by incremental updates to re-
spectively token-paths annotations and to local copies of (normalized) markings
after a gateway is fired.

Possibilities for future work include extending the semantics to cover more of
BPMN, formalizing the incremental implementations of the semantics and prove
their correctnes, and investigating applications of the semantics to real projects
that make use of BPMN 2.0. Additionally, other approaches than token-based
semantics, such as graph rewriting, can possibly be developed to give a simpler
semantics for inclusive gateways. We also plan to implement the semantics fol-
lowing the different approaches sketched in Section|3.3] analyze their complexity
and compare the implementations using a set of example BPMNj,. processes.

References

1. Egon Borger, Ole Sorensen, and Bernhard Thalheim. On defining the behavior of
OR-joins in business process models. J. UCS, 15(1):3-32, 2009.

2. Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analy-
sis of business process models in BPMN. Information and Software Technology,
50(12):1281 — 1294, 2008.

3. Marlon Dumas, Alexander Groflkopf, Thomas Hettel, and Moe Thandar Wynn.
Semantics of standard process models with OR-~joins. In OTM Conferences (1),
volume 4803 of Lecture Notes in Computer Science, pages 41-58. Springer, 2007.

4. Object Management Group. BPMN 1.0: OMG final adopted specifica-
tion. http://www.bpmn.org/Documents/0MG_Final_Adopted_BPMN_1-0_Spec_
06-02-01.pdf}, accessed May 10, 2010, Febrary 2006.

5. Object Management Group. Business process modeling notation (BPMN) 2.0 beta
1. http://www.omg.org/cgi-bin/doc?dtc/09-08-14.pdf, accessed May 10, 2010,
August 2009.

6. Ekkart Kindler. On the semantics of EPCs: Resolving the vicious circle. Data
Knowl. Eng., 56:23-40, 2006.

7. James L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223-252, 1977.

8. Davide Prandi, Paola Quaglia, and Nicola Zannone. Formal analysis of BPMN via
a translation into COWS. In Coordination Models and Languages, volume 5052 of
Lecture Notes in Computer Science, pages 249-263. Springer Berlin / Heidelberg,
2008.

9. W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: yet another workflow
language. Information Systems, 30(4):245 — 275, 2005.

10. Peter Y. H. Wong and Jeremy Gibbons. A process semantics for BPMN. In Formal
Methods and Software Engineering, volume 5256 of Lecture Notes in Computer
Science, pages 355-374. Springer Berlin / Heidelberg, 2008.

11. JianHong Ye, ShiXin Sun, Wen Song, and LiJie Wen. Formal semantics of BPMN
process models using YAWL. In Intelligent Information Technology Application,
2008. I1ITA ’08. Second International Symposium on, volume 2, pages 70 —74, 20-22
2008.


http://www.bpmn.org/Documents/OMG_Final_Adopted_BPMN_1-0_Spec_06-02-01.pdf
http://www.bpmn.org/Documents/OMG_Final_Adopted_BPMN_1-0_Spec_06-02-01.pdf
http://www.omg.org/cgi-bin/doc?dtc/09-08-14.pdf

	Formal Semantics and Implementation of BPMN 2.0 Inclusive Gateways

