
SoftwareDevelopment for theWorkingActuary
David Raymond Christiansen

drc@itu.dk

The Problem
• Solvency II imposes new and complicated computational demands on insurers

• Software systems with forms-based interaction are not sufficiently flexible

• Current techniques do not support the full generality of actuarial models

Who are actuaries?
• Trained mathematicians

• Some programming background (usually
in R)

Current Practice
1. Actuarial Models
Actuaries use continuous-time Markov models.
Payment streams bj(t) are attached to states,
single payments bjk(t) are attached to transi-
tions. Transition intensities µjk(t) represent
chance of state change.

0

b0(t) = 0

1

b1(t) = 1t<n

2

b2(t) = 0

µ01(t)
µ10(t)

b01(t) = 0
b10(t) = 0

µ02 (t)

b02 (t) = 1t<g

µ 12(
t)

b02(
t) =

1 t<
g

This product pays $1 per year in case of disabil-
ity until some expiration n and a $1 lump-sum
benefit upon death prior to g.

2. Calculating Reserves
Using payment and risk information from the
model, derive Thiele’s differential equations:

d
dt

Vj(t) =

(
r(t) + ∑

k;k 6=j
µjk(t)

)
Vj(t)

− ∑
k;k 6=j

µjk(t)Vk(t)

− bj(t)− ∑
k;k 6=j

bjk(t)µjk(t)

(In practice, most companies use a standard ref-
erence work of products)

3. Programmers Write Code
Professional software developers convert ana-
lytic solutions into software. Consequences:

• Long turnaround time

• Repeated effort for similar products

• Models must be simplified

Work supported by the Danish Advanced Technology

Foundation (Højteknologifonden) (017-2010-3). AML was de-

signed in collaboration with Peter Sestoft from IT Univer-

sity of Copenhagen and Henning Niss, Niels Kokholm,

Klaus Grue, and Kristján Sigtryggsson from Edlund A/S.

Our Vision: the Actulus Modeling Language
The Actulus Modeling Language (AML) seeks to empower actuaries to write their own analyses
and run them efficiently. The language supports actuarial concepts directly.

Actuaries Write the Code

Actuaries
design model

in AML

AML type
system

finds errors

Numerical
ODE solver

computes results

Properties of AML
Functional taking advantage of actuaries’ strong mathematical background

Domain-specific supporting actuarial concepts directly

Total enabling analyses and preventing bugs

Dependent types provide very strong correctness guarantees

Products and Models in AML
AML separates state models, risk models, and products. This allows modular construction of
actuarial models.

statemodel Disability(p : Person) where
states = active

disabled
dead

transitions = active -> disabled
active -> dead
disabled -> active
disabled -> dead

riskmodel DisabilityRisk(p : Person)
: Disability(p) where

intensities =
active -> dead by gm(p)
disabled -> dead by gm(p)
active -> disabled by ...
disabled -> active by ...

product Policy(p : Person, n : TimePoint, g : TimePoint) : Disability(p) where
obligations = at t pay $1 per year provided(disabled and t < n)

at t pay $1 when(not dead -> dead) provided(t < g)

Static Types in AML
Static types catch errors early:

• Wrong state model

• Missing transition intensities

• Adding currency to time

Dependent Types
Dependent types allow library writers to give
very strong guarantees:

• A product for Cathy is used with a statis-
tical model for Cathy, not one for Joe

• Tracking units: dollars per year vs. dollars

Goals
• Fast turnaround — no professional pro-

grammers needed

• Use one technical artifact for different cal-
culations and for administration, across
technical platforms

• Catch errors early

• Readable notation

Ongoing Work
• Specification and formalization of the

type system

• Implement AML and put it in front of real
users.

